Plasma Surface Metallurgy

Zhong Xu · Frank F. Xiong

Plasma Surface Metallurgy

With Double Glow Discharge Technology
—Xu-Tec Process

Zhong Xu Taiyuan University of Technology Taiyuan, Shanxi China Frank F. Xiong Heaptech Engineering, Inc. San Jose, CA USA

ISBN 978-981-10-5722-9 ISBN DOI 10.1007/978-981-10-5724-3

ISBN 978-981-10-5724-3 (eBook)

Jointly published with Science Press, Beijing, China ISBN: 978-7-03-053693-8 Science Press, Beijing, China

The print edition is not for sale in China Mainland. Customers from China Mainland please order the print book from: Science Press, Beijing

Library of Congress Control Number: 2017948213

© Science Press, Beijing and Springer Nature Singapore Pte Ltd. 2017

This work is subject to copyright. All rights are reserved by the Publishers, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publishers, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publishers nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publishers remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

I would like to dedicate this book to Dr. German Bernard Berghaurs, the inventor of plasma nitriding technology and a pioneer who had been first applying the glow discharge phenomenon to material surface alloying technology.

Innovative development of the plasma nitriding technology made it possible for me to invent the technology of Double Glow Discharge Plasma Surface Metallurgy.

> David Zhong Xu @ Taiyuan, China

Foreword

The modification of metal surfaces is used to increase surface hardness, improve interface interactions between separate surfaces (tribological interactions), and/or decrease surface chemical activity and degradation. Surface modifications can improve the performance and extend the life of basic materials, particularly those that have desirable bulk characteristics such as weight per volume, machinability, material cost, etc. The reference book, "Plasma Surface Metallurgy with Double Glow Discharge Technology", written by my good friend Prof. Zhong Xu and his colleagues, is to introduce this kind of surface metallurgical technology to our readers.

I met Prof. Xu in the United States in 1981. It was at this time that he began serious work on a "new" plasma technique based upon a double glow discharge process. The process has been shown experimentally and commercially to modify metal surfaces (and ceramic surfaces) to improve important parameters already noted. Additionally, the surface treatment alloy elements diffuse into the base metal to a sufficient depth and the modified surface layer attaches effectively to the base material such that the interface adhesion is extraordinary.

This book explains and describes the metallurgy, physics, and chemistry of this new technique and describes current and future application areas. Prof. Xu's technique was patented in many countries and is known as Xu-Tec. Numerous commercial products have been made and implemented using this process. The technique holds considerable potential for numerous applications, particularly for sheet steel and for many unique alloys such as titanium, molybdenum, tantalum, and super alloys, such as NiCrMoCu and NiCrMoNb, as well. Applications are reported for hardening stainless steel and for plasma surface metallurgy to produce antibacterial stainless steel surfaces.

The book is also a rather complete in-depth description of surface metallurgy in general. Chapters are included which describe and explain surface engineering and alloying technology including conventional techniques and plasma processing (including nitriding, carburizing, and sulphurizing). Additionally, ceramization on stainless sheet surfaces and treatment of ceramic surfaces are both described.

viii Foreword

The book is particularly useful in that it describes industrial applications of Xu-Tec and performance which can be achieved in applications such as band saw blades and an industrial colloid mill. An application to produce corrosion resistant steel plate is also described. Double glow plasma surface metallurgy equipment and laboratory operation and commercial production are also described.

This book will be valuable to those in the general area of surface metallurgy. The substantial description of the Xu-Tec process is very important and should assist in expanding the use of this superior technique. The in-depth explanation of glow discharges and their use in general will also serve as a valuable reference in the field.

I congratulate Prof. Xu and his colleagues for their extraordinary technical and application contribution which will serve researchers and manufacturers for the future.

James E. Thompson

Dean of Engineering Emeritus, LaPierre Professor of Mechanical and Aerospace Engineering Fellow of the Institute of Electrical and Electronic Engineers, University of Missouri Columbia, MO, USA

Preface

The "Plasma Nitriding" process, invented by German Bernard Berghaus in 1930, was the first surface alloying technology where nitrogen gas glow discharge plasma was utilized. It is considered as one of the most important achievements in the surface metallurgical modification and "the foundation stone of modern plasma surface engineering". Today, it has been widely used for surface nitriding treatment on metals and has generated huge economic profits and social benefits. However, in more than 50 years after its advent, plasma nitriding can only be applied to non-metallic elements, such as nitrogen, carbon, sulfur, etc.

Advanced on the plasma nitriding technology, a new surface alloying modification method, named the double glow discharge plasma surface metallurgy technology, has been invented by using the "Double Glow Discharge Plasma Process".

In 1978, Prof. Zhong Xu discovered the "Double Glow Discharge Phenomenon" in his laboratory in Taiyuan University of Technology, China. Following this discovery, the "Double Glow Plasma Surface Metallurgy Technology" for the metal surface alloying modification was invented in 1980. Further development was advanced while Xu was visiting the USA and working in Prof. James Thompson's Laboratory.

In the double glow discharge plasma surface alloying process, one set of Argon gas discharge plasma is employed for sputtering of a solid alloying target, while another set of glow discharge plasma is generated on the substrate surface for heating and alloying reaction. By this process, many chemical elements in the chemical element periodic table, including the solid metal elements and gaseous nonmetal elements, can be utilized for surface alloying on metals. The substrate surface heating and thermal drive interdiffusion of sputtering deposited alloying elements into the surface of substrate materials to form a surface alloy layer with enhanced interface adhesion.

Double glow plasma surface alloying technology was filed for an invention patent first in the United States of America in 1982 and granted in 1985. Afterwards, this technology, referred as the "Xu-Tec Process", had attracted a great engineering interest in the materials industrial community upon its industrial application potentials. Several news and appraisal comments on this subject have

x Preface

been reported. Later, the Xu-Tec has also patented world-widely in the United Kingdom, Canada, Australia, and Sweden et al.

In over almost 40 years after the invention, the experimental research results have demonstrated that the Xu-Tec process can be utilized with high feasibility for surface alloying modification of metals, to form many surface alloying layers with high hardness, wear resistance, resistance to corrosion on the surfaces of low-grade metal substrates. The substrate materials include titanium and titanium alloys, copper and copper alloys, intermetallic compounds, and other conductive materials. A gradient alloy ceramic layer (transferred from metal matrix to ceramic) can also be formed on the surface of metal material by this technology.

The Xu-Tec process has opened up a new material engineering field of "Plasma Surface Metallurgy". With this surface metallurgy process for material surface modification, it can transfer many low-grade and low-cost solid matrices of industrial engineering materials to be a "gold" material with a high value and high grade or special functions. This improved material would be widely used in industrial production to improve the surface performance and quality of mechanical parts and manufacturing products, and to conserve expensive alloying elements for the benefit of all mankind.

Taking many advantages of the Xu-Tec process, several industrial applications have developed. High-speed steel, stainless steel, nickel based alloys, and more complex composition alloys on the surfaces of steels have been produced. Surface alloying modification on cutting tools, chemical valves, colloid mills, large steel plates, and other industrial products was also demonstrated, with substantial improvement in their surface properties and quality of components for the mechanical manufacturing industry. The Xu-Tec process has been developed to be one of the most advanced, powerful, and practical surface alloying technologies in today's world. This technology has broad application prospects in machinery manufacturing, marine engineering, transportation, food processing equipment, household appliances, and the aerospace and defense industries.

The Xu-Tec process is a typical physical metallurgical technology, involving a series of advanced physical subprocesses such as vacuum and pressure control, double glow discharge and low-temperature plasma, material sputtering and physical vapor deposition, ion bombardment and plasma heating, thermal driven interdiffusion, and alloying formation. This technology has no chemical waste and no pollution (dust, liquid, gaseous). It is an environment-friendly and resource-saving surface alloying technology.

In addition to using the double glow discharge phenomenon for surface modification, a series of other new technologies for material treatments have been also developed, such as double glow plus arc discharge surface alloying, double glow brazing, double glow sintering, double glow nano-powder synthesizing, double glow diamond film growth, double glow surface cleaning, and more others.

The purpose of the book publication is to introduce the Xu-Tec technology to the world and promote further attention and interest for scientific research and engineering development, as well as industrial utilization and product commercialization. This book summarizes the technology development history, physical

Preface xi

mechanism, and research results of surface metallurgy with double glow plasma surface metallurgy. To this end, the book has also concentrated additional detailed understandings and experiences by numerous researchers and developers in this technology area.

There are numerous researchers and engineers, as well as Ph.D. students and professors who have given their substantial contributions to this technology development. We just could not list all their names here to show them our appreciations. However, we appreciate very much that this book has the following persons contributed in writing:

- Chapters 5 and 13—Pingze Zhang, Ph.D.
- Chapters 6 and 7—Yanmei Zhang, Ph.D.
- Chapter 8—Zhengxian Li and Wen Zhao, Ph.D.
- Chapter 9—Xiaoping Liu, Ph.D.
- Chapter 10—Wenping Liang, Ph.D.
- Chapter 11—Qiang Miao and Hongyan Wu, Ph.D.
- Chapter 12—Jun Huang, Ph.D.

We are especially grateful for the help from Dr. Hongyan Wu and Dr. Jun Huang, who have spent much time in assisting of proof reading and formatting of this book.

It is also very grateful to Springer and Science Press China to give such an opportunity to publish this book in time.

Acknowledgements: All figures in this book are reprinted from the related references given in each chapter, with written permission from the corresponding copyright holders in the list below. We acknowledge their permissions and very much appreciate their support:

- 1. Advanced Materials Research
- 2. Applied Surface Science
- 3. China Science Press, Beijing (中国科学出版社)
- 4. China Surface Engineering (中国表面工程)
- 5. Corrosion Science and Protection Technology (腐蚀科学与防护技术)
- 6. Heat Treatment of Metals (金属热处理)
- 7. Hot Working Technology (热加工工艺)
- 8. Journal of China Society of Corrosion and Protection (中国腐蚀与防护学报)
- 9. Journal of Rare Earths
- 10. Rare Metal Materials & Engineering (稀有金属材料与工程)
- 11. Surface & Coatings Technology
- 12. Transactions of Materials and Heat Treatment (材料热处理学报)
- 13. Materials Review (材料导报)
- 14. Transactions of Nonferrous Metals Society of China (中国有色金属学报)
- 15. Tribology (摩擦学学报)
- 16. Vacuum
- 17. Vacuum Science and Technology (真空科学与技术学报)

xii Preface

18. China Knowledge Resource Integrated Database (CNKI) (中国期刊全文数据库)

- 19. Journal of Nanjing University of Aeronautics and Astronautics (南京航空航天大学学报)
- 20. Journal of Taiyuan University of Technology (太原工业大学学报)
- 21. Journal of Wuhan University of Technology-Mater. Sci. Ed (武汉工业大学学报-材料科学版)
- 22. https://en.wikipedia.org/wiki/Glow_discharge

Zhong Xu Taiyuan, China

Frank F. Xiong San Jose, USA

Contents

1	Intro	oduction .		1
	1.1	Engine	ering Materials and Its Surface	1
	1.2	Surface	Engineering and Its Classification	2
		1.2.1	Concept of Surface Engineering	2
		1.2.2	Surface Hardening Technology	3
		1.2.3	Surface Covering Technology	4
		1.2.4	Surface Alloying/Metallurgy Technology	5
		1.2.5	Classification Table	6
	1.3	Existing	g Surface Alloying Technology	7
		1.3.1	Conventional Surface Alloying Technology	7
		1.3.2	Modern Surface Alloying Technology	8
		1.3.3	Concept of Plasma Surface Metallurgy	8
	1.4	Glow I	Discharge and Plasma Nitriding	9
		1.4.1	History of Glow Discharge	9
		1.4.2	Concept of Plasma	10
		1.4.3	Advent of Plasma Nitriding in Germany	10
	Refe	rences		11
2	Plası	ma Nitrio	ding	13
	2.1 Glow Discharge and Its Characteristics			
		2.1.1	Characteristics of Glow Discharge	13
		2.1.2	Stratified Phenomenon	14
		2.1.3	Interactions Between Ions and Material Surface	15
	2.2	Plasma	Nitriding Process	17
		2.2.1	Basic Principle	17
		2.2.2	Advantages	18
		2.2.3	Industrial Applications	18
	2.3	Other F	Plasma Surface Alloying Technology	19
		2.3.1	Plasma Carburizing	19
		2.3.2	Plasma Nitro-Carburizing	19

xiv Contents

	2.4 2.5 Refer	Develo	Plasma Sulphurizing	19 20 20 21
3	Doub	ole Glow	Discharge Phenomenon and Its Applications	23
	3.1		s Double Glow Discharge Phenomenon?	23
	3.2	Discove	ery of Double Glow Discharge	24
	3.3	Double	Glow Discharge Modes	25
		3.3.1	Independent Discharge Mode	25
		3.3.2	Dependent Discharge Mode	25
		3.3.3	Pulse Discharge Mode	26
		3.3.4	Other Discharge Mode	26
	3.4	Double	Glow Hollow Cathode Discharge (DG-HCD)	26
		3.4.1	Hollow Cathode Discharge (HCD)	26
		3.4.2	Concept of DG-HCD	28
		3.4.3	Current Amplification Effect of DG-HCD	29
	3.5		of Double Glow Plasma Surface Alloying/Metallurgy	
			c Process)	30
		3.5.1	First Experimental Device	30
		3.5.2	First Microstructure of Tungsten Surface Alloy	31
		3.5.3	Other Considerations	32
	Refer	rences		32
4	Doub	ole Glow	Plasma Surface Alloying/Metallurgy Technology	33
	4.1	Introdu	ction	33
	4.2	Basic F	Principle	34
	4.3	Diffusion	on Mechanism	36
	4.4	Process	S Operation	37
	4.5	Configu	uration of Working-Piece and Source Electrode	38
		4.5.1	Plate Type	38
		4.5.2	Cave Type	39
		4.5.3	Deep Well Type	40
	4.6		ological Parameters	40
		4.6.1	Measurable Parameters	40
		4.6.2	Typical Process Parameters	47
		4.6.3	Nonmeasurable Parameters	48
	4.7		scharge	49
		4.7.1	Micro-Arc Discharge	50
		4.7.2	Macro Arc Discharge	50
		4.7.3	Harmfulness of Arc Discharge	51
		4.7.4	Reasons of Arc Discharge	51

Contents xv

	4.8		le Power Transmission Device and Gap Protection	53
		4.8.1	Requirements of Cathode Transmission Device	54
		4.8.2	Principle of Gap Protection	54
		4.8.3	Example of Cathode Transmission Device	56
	4.9		tages of Xu-Tec Process	56
	4.10		rements for Operators	58
	4.11		c Process in USA	58
	4.12		c Process in China	59
	4.13	Summa	ary and Outlook	60
	Refer	rences		61
5	Physi	ical Bas	is of Plasma Surface Metallurgy	63
	5.1	Glow 1	Discharge and its Discharge Characteristics	63
		5.1.1	Gas Discharge	64
		5.1.2	Glow Discharge Process	64
		5.1.3	Stratification Phenomenon	66
		5.1.4	Glow Discharge Characteristics	68
	5.2	Low-T	'emperature Plasma	69
		5.2.1	Plasma and Its Generation	69
		5.2.2	Characteristics of Double Glow Discharge Plasma	71
	5.3	Ion Bo	ombardment and Sputtering	73
		5.3.1	General Description of Sputtering Process	73
		5.3.2	Preferential Sputtering	75
		5.3.3	Alloy Sputtering	75
	5.4	Propag	gation of Glow Discharges	76
		5.4.1	Ionization Degree and Mean Free Path	77
		5.4.2	Propagation of Plasma in Double Glow Discharges	78
	5.5	Diffusi	on Process Under Ion Bombardment	79
		5.5.1	Diffusion Model	80
		5.5.2	Diffusion Mechanism	82
	5.6	Prospe	ct	85
	Refer	ences		87
6	Plasn	na Surfa	ace Metallurgy of Iron and Steel	89
	6.1	Introdu	action	89
		6.1.1	Plasma Surface Alloying and Alloying Element	89
		6.1.2	Interaction of Alloying Element with Fe and C	90
	6.2	Single-	-Element Plasma Surface Metallurgy	91
		6.2.1	Plasma Surface W Alloying	91
		6.2.2	Plasma Surface Ti Alloying	92
		6.2.3	Plasma Surface Cr Alloying	93
		6.2.4	Plasma Surface Al Alloying	95
		6.2.5	Plasma Surface Mo Alloying	95
		6.2.6	Plasma Surface Ta Alloying	97

xvi Contents

	6.3	Multiple-Element Plasma Surface Metallurgy	97
		6.3.1 Plasma Surface W–Mo Alloying	98
		6.3.2 Plasma Surface Ni–Cr Alloying	99
		6.3.3 Plasma Surface Cr–Mo Alloying	99
	6.4	Plasma Surface Metallurgy Superalloys	100
		6.4.1 Superalloy	100
		6.4.2 Plasma Surface Ni–Cr–Mo–Nb Superalloys	101
		6.4.3 Plasma Surface Ni–Cr–Mo–Cu Superalloys	102
	6.5	Plasma Surface Metallurgy Precipitation Hardening	
		Stainless Steels	103
		6.5.1 Plasma Surface Alloying Process	103
		6.5.2 Age Hardening Process	104
		6.5.3 Corrosion and Wear Tests	104
	6.6	Plasma Surface Metallurgy Antibacterial Stainless Steels	105
		6.6.1 Cu-Antibacterial Stainless Steel	105
		6.6.2 Ag-Antibacterial Stainless Steel	106
		6.6.3 Ag–Cu Antibacterial Stainless Steel	106
	6.7	Plasma Composite Treatment	106
		6.7.1 Plasma Titanium and Titanium–Nitrogen Alloying	107
		6.7.2 Brush Plating and Plasma Surface Alloying	107
	6.8	Summary	107
	Refer	rences	108
7	Plasn	na Surface Metallurgy High-Speed Steel	109
	7.1	High-Speed Steels (HSS)	109
		7.1.1 Conventional Metallurgy HSS	109
		7.1.2 Powder Metallurgy HSS	110
		7.1.3 Plasma Surface Metallurgy HSS	110
	7.2	Plasma Surface Metallurgy W-Mo HSS	111
		7.2.1 Plasma Surface W–Mo Alloying	111
		7.2.2 Carburizing, Quenching and Tempering	112
	7.3	Plasma Surface Metallurgy Aging Hardening HSS	113
		7.3.1 Aging Hardening HSS and Its Excellent Cutting	
		Performance	113
		7.3.2 Plasma Surface W–Mo–Co Alloying	113
		7.3.3 Decarburization and Its Effect on Microstructure	115
		7.3.4 Solid Solution and Aging Treatment	118
	7.4	Plasma Surface Metallurgy W-Mo-C HSS	120
	7.5	Plasma Surface Metallurgy W-Mo-Ti HSS	122
		7.5.1 Plasma W–Mo–Ti Alloying	122
		7.5.2 Carburizing	123
		7.5.3 Quenching and Tempering	124

Contents xvii

	7.6	Plasma	Surface Metallurgy Mo-Cr Low Alloy HSS	124
	7.7	Conclu	sion and Prospects	126
	Refer	ences		126
8	Plasn	na Surfa	ace Metallurgy of Titanium and Titanium Alloys	129
	8.1		action to Titanium and Titanium Alloys	129
		8.1.1	Classification and Properties	129
		8.1.2	Effect of Alloying Elements	130
		8.1.3	Optimal Alloying Parameters	131
	8.2	Plasma	Surface Metallurgy Wear-Resistant Alloys	132
		8.2.1	Double Glow Plasma Molybdenizing	132
		8.2.2	Double Glow Plasma Molybdennitriding	135
	8.3	Plasma	Surface Metallurgy Flame-Resistant Alloys	137
		8.3.1	Method for Protecting Titanium Alloy from	
		0.0.0	"Titanium Fire"	137
		8.3.2	Plasma Surface Metallurgy Ti-Cu Flame-Resistant	120
		0.2.2	Alloy	139
		8.3.3	Plasma Surface Metallurgy Ti-Cr Flame-Resistant	1.41
		0.2.4	Alloy	141
		8.3.4	Plasma Surface Metallurgy Ti-Mo Flame-Resistant	1.40
		0.2.5	Alloy	143
		8.3.5	Plasma Surface Metallurgy Ti–Nb Flame-Resistant	1.40
	0.4	D1	AlloyTi Di	148
	8.4		Surface Metallurgy Ti–Pd	149
		8.4.1	ion-Resistant Alloy Overview of Corrosion-Resistant Titanium Alloys	149
		8.4.2	Plasma Surface Metallurgy Ti–Pd Alloy	150
		8.4.3	Corrosion Resistance of Plasma Surface	130
		8.4.3		151
	8.5	Dlaama	Ti–Pd Alloy Surface Metallurgy Ti–Nb	131
	8.3		ion-Resistant Alloy	152
	8.6		Surface Carburizing Without Hydrogen	152
	8.0	8.6.1	Plasma Carburizing with no Hydrogen	153
		8.6.2	Microstructure and Composition	133
		8.0.2	of Carburized Layer	154
		8.6.3	Tribological Properties	157
	8.7		ations	158
	8.8		ct	159
				160
9	Plasn	na Surfa	ace Metallurgy of Intermetallic Compounds	163
	9.1		round	163
		9.1.1	Intermetallic Compound and Its Classification	163
		9.1.2	Conventional Surface Treatment	165

xviii Contents

	9.2	Plasma Surface Metallurgy of TiAl	165		
		9.2.1 Plasma Surface Metallurgy Nb-Alloy	165		
		9.2.2 Plasma Surface Metallurgy Mo-Alloy	169		
		9.2.3 Plasma Surface Metallurgy Cr-Alloy	172		
		9.2.4 Plasma Surface Metallurgy Ni–Cr–Mo–Nb Alloy	174		
	9.3	Plasma Surface Metallurgy of Ti ₂ AlNb	174		
		9.3.1 Plasma Surface Metallurgy Cr-Alloy	174		
		9.3.2 Plasma Surface Metallurgy Mo-Alloy	175		
	9.4	Prospect	177		
	Refer	ences	177		
10	Plasn	na Surface Metallurgy of Other Materials	179		
	10.1	Plasma Surface Metallurgy of Copper and Copper Alloys	179		
		10.1.1 Plasma Surface Metallurgy Ti Alloy	180		
		10.1.2 Plasma Surface Metallurgy Ni Alloy	182		
	10.2	Plasma Surface Metallurgy of Niobium Alloy	182		
		10.2.1 Plasma Surface Metallurgy Ir Alloy	183		
		10.2.2 Plasma Surface Metallurgy Mo Alloy	183		
		10.2.3 Plasma Surface Metallurgy Fe-Cr-Mo-Si Alloy	184		
	10.3	Plasma Surface Metallurgy of Molybdenum	185		
	10.4	Plasma Surface Metallurgy of Tungsten	186		
	10.5	Plasma Surface Metallurgy of C/C Composite	187		
	10.6	Plasma Surface Metallurgy Ta Alloy	188		
	10.7	Plasma Surface Metallurgy Fe–Al–Cr Alloy	191		
	10.8	Prospect	193		
	Refer	ences	194		
11	Grad	ient Ceramization of Metal Surface and Metallization			
	of Ceramic Surface				
	11.1	Ceramization of Carbon Steels	197		
		11.1.1 Plasma Surface Metallurgy TiN Ceramic	198		
		11.1.2 Plasma Surface Metallurgy WC Ceramic	203		
		11.1.3 Plasma Surface Metallurgy TiC Ceramic	208		
		11.1.4 Plasma Surface Metallurgy Ti(CN) Ceramics	210		
	11.2	Metallization of Ceramics	211		
		11.2.1 Metallization of TiSi ₃₀ Ceramic	211		
		11.2.2 Metallization of Si ₃ N ₄ Ceramic	212		
		11.2.3 Plasma Surface Metallurgy Ta-C on Diamond			
		and Cemented Carbide	214		
		11.2.4 Surface Metallization of Diamond Films	217		
	11.3	Plasma Surface Metallurgy Gradient-Function Luminescent			
		Ceramics Er–ZrO ₂ on Ti6Al4V	218		

Contents xix

		11.3.1	Zirconia Functional Ceramics	218
		11.3.2	Material Preparation and Processing Parameters	219
		11.3.3	Microstructure Analysis	219
		11.3.4	Friction and Wear Properties	221
		11.3.5	Special Gradient Luminescent Properties	222
	11.4	Prospec	zt	223
	Refer	-		224
12	Indus	strial Ap	pplications and Equipment Scaling-Ups of Xu-Tec	
	Proce	ess		227
	12.1	Xu-Tec	High-Speed Steel (HSS) Handsaw Blade	227
		12.1.1	Xu-Tec HSS Process	227
		12.1.2	Working-piece-Source Structure for Xu-Tec Handsaw	
			Blade	228
		12.1.3	Production Processes	229
		12.1.4	Microstructure and Composition	231
		12.1.5	Cutting Performance	234
		12.1.6	Industrialization	234
	12.2	Xu-Tec	HSS Treatment of Colloid Mill	235
		12.2.1	Introduction	235
		12.2.2	Process of Xu-Tec HSS Colloid Mill	236
		12.2.3	Workpiece-Source Configuration Setup	
			for Colloid Mill	236
		12.2.4	Surface Alloying, Carburizing, Quenching,	
			and Tempering	237
		12.2.5	Assessment and Economic Benefits	241
	12.3	Plasma	Surface Metallurgy Ni-Cr Corrosion Resistant Alloy	
		Plate		241
		12.3.1	Plasma Surface Ni-Cr Alloying	242
		12.3.2	Workpiece-Source Setup for Steel Plate Alloying	242
		12.3.3	Corrosion Resistance Test	243
		12.3.4	The Most Important Industry Application	245
	12.4	Plasma	Surface Metallurgy Chemical Valves and Flanges	245
	12.5	Xu-Tec	Equipment	246
		12.5.1	Diagram of Xu-Tec Industrial Furnace	246
		12.5.2	Existing Furnaces and Its Applications	247
		12.5.3	Composition and Function of Each Part	248
		12.5.4	Technical Specifications	252
		12.5.5	Differences Between Xu-Tec Furnace and Plasma	
			Nitriding Equipment	253
	12.6	Prospec	et and Outlook	253
	Refer	ences		254

xx Contents

13	Other Technologies by Double Glow Discharge Plasma Phenomenon			
	13.1	Arc Plasma Added Double Glow Surface Alloying		
		Technology	257	
	13.2	Double Glow Plasma Brazing Technology	258	
	13.3	Double Glow Plasma Sintering Technology	259	
	13.4	Double Glow Plasma Nano-Powder Technology	260	
	13.5	Double Glow Plasma Thin Diamond Film Technology	261	
	13.6	Double Glow Plasma Sputter Cleaning Technology	262	
	13.7	Double Glow Plasma Chemistry	264	
	13.8	Prospect	265	
	Refer	ences	265	
Clo	sing R	emarks	267	