ТЕПЛОВОЕ ИЗЛУЧЕНИЕ В ДИСПЕРСНЫХ СИСТЕМАХ (о некоторых работах последних лет)

Леонид Александрович Домбровский Объединенный ин-т высоких температур РАН

Рассматриваются:

- * Обоснование предложенного метода лазерной гипертермии раковых опухолей;
- ***** Оценка новой концепции тепловой защиты солнечного зонда.

Названные задачи объединяет общий методический подход:

- Расчет переноса излучения в дисперсных системах с многократным рассеянием на основе транспортной модели и дифференциальных приближений;
- Решение уравнения энергии с учетом кинетики теплового разрушения клеток опухоли или кинетики сублимации частиц, экранирующих тепловое излучение Солнца.

СТРАТЕГИЯ «УДУШЕНИЯ» И ТЕРМИЧЕСКОГО РАЗРУШЕНИЯ ПОВЕРХНОСТНЫХ ОПУХОЛЕЙ (теоретическая модель)

Расчетная область осесимметричной модельной задачи

Периодически нагревается только кольцевая область тела вокруг опухоли.

ВЫЧИСЛИТЕЛЬНАЯ МОДЕЛЬ ПЕРЕНОСА ИЗЛУЧЕНИЯ

А. Транспортное уравнение переноса излучения (для многократного рассеяния в слабо поглощающих средах [1]):

$$\vec{\Omega}\nabla I_{\lambda}\left(\vec{r},\vec{\Omega}\right) + \beta_{\lambda}^{\mathrm{tr}}I\left(\vec{r},\vec{\Omega}\right) = \frac{\sigma_{\lambda}^{\mathrm{tr}}}{4\pi} \int_{(4\pi)} I_{\lambda}\left(\vec{r},\vec{\Omega}\right) d\vec{\Omega}$$

- В. Аддитивность направленной и диффузной компонент поля излучения (метод академика В.В. Соболева).
- С. Дифференциальное приближение для диффузной компоненты [1–3] (математические выкладки и формулировки спектральных краевых задач для краткости опускаются).

- 1. L.A. Dombrovsky, D. Baillis, Thermal Radiation in Disperse Systems: An Engineering Approach, BH, NY, 2010.
- 2. L. Dombrovsky, J. Randrianalisoa, D. Baillis, J. Optical Soc. Amer. A 23 (1) (2006) 91–8.
- 3. L.A. Dombrovsky, J.H. Randrianalisoa, W. Lipiński, V. Timchenko, Comput. Thermal Sci. 5 (6) (2013) 521–30.

УРАВНЕНИЯ ЭНЕРГИИ И КИНЕТИКИ ДЕГРАДАЦИИ ТКАНЕЙ

Система уравнений энергии (1) для биологической ткани (включая венозную кровь) и (2) для артериальной крови: теплообмен артериальной крови

$$(1 - \varepsilon_{a})(\rho c)_{t} \frac{\partial T_{t}}{\partial t} = \nabla [(1 - \varepsilon_{a})k_{t}\nabla T_{t}] + h_{b,t}(T_{b} - T_{t}) + (1 - \varepsilon_{a})W_{m} + (1 - \varepsilon_{a}\frac{\alpha_{b}}{\alpha})W + W_{ch}$$
(1)
$$\varepsilon_{a}(\rho c)_{b} \left(\frac{\partial T_{b}}{\partial t} + \vec{u}_{b}\nabla T_{b}\right) = \nabla [\varepsilon_{a}k_{b}\nabla T_{b}] - h_{b,t}(T_{b} - T_{t}) + \varepsilon_{a}\frac{\alpha_{b}}{\alpha}W$$
(2)

*E*_a – объемная доля артериальной крови, *W*_m – тепловой эффект клеточного метаболизма
 W – <u>мощность поглощенного излучения</u>, *W*_{ch} – тепловой эффект эндотермических повреждений ткани

Кинетические уравнения для повреждения (a) артериальной крови и (b) окружающих тканей:

$$\frac{\partial \xi_{b}}{\partial t} = (1 - \xi_{b})A_{b} \exp\left(-\frac{E_{b}}{RT_{b}}\right) \quad (a) \qquad \frac{\partial \xi_{t}}{\partial t} = (1 - \xi_{t})A_{t} \exp\left(-\frac{E_{t}}{RT_{t}}\right) - B_{t}\xi_{t}\omega_{b} \quad (b)$$

$$\frac{Perehepaqua \ \text{живых тканей}}{B \ pesyльтате артериальной перфузии } \omega_{t}$$

1. L.A. Dombrovsky, V. Timchenko, M. Jackson, Indirect heating strategy of laser induced hyperthermia: An advanced thermal model, *Int. J. Heat Mass Transfer* 55 (2012) 4688–700.

РЕЗУЛЬТАТЫ РАСЧЕТОВ И ПРЕИМУЩЕСТВА «УДУШЕНИЯ» ОПУХОЛИ (Indirect Heating Strategy –IHS)

<u>Преимущества предложенной стратегии</u> (в отличие от прямого лазерного нагрева):

- Тепло поступает к опухоли с разных сторон, что приводит к ее <u>равномерному объемному нагреву</u>.
- Система тепловой регуляции человека не рассчитана на поступление тепла из объема тела («память» гипоталамуса); такой нагрев <u>не вызывает значимого</u> увеличения кровотока.
- Перегрев артериальной крови, поступающей в опухоль, приводит к частичной потере кислорода эритроцитами и кислородному голоданию (удушению) опухоли, что предотвращает регенерацию опухолевых клеток.
- Водяное охлаждение освещаемой поверхности тела с помощью прозрачной накладки с гибкими трубками <u>значительно снижает боль</u> при сеансе гипертермии.

СОЛНЕЧНЫЙ ЗОНД (КОМПЬЮТЕРНАЯ МОДЕЛЬ)

NASA/Johns Hopkins University Applied Physics Laboratory - http://www.jhuapl.edu/newscenter/pressreleases/2014/140318.asp

Плита тепловой защиты

ЭКРАНИРОВАНИЕ ИЗЛУЧЕНИЯ ЧАСТИЦАМИ, ГЕНЕРИРУЕМЫМИ РАЗЛАГАЮЩИМСЯ МАТЕРИАЛОМ

Основные требования к облаку частиц:

- Значительное отражение солнечного излучения;
- Малая скорость сублимации твердого вещества частиц до ~ 3000 К.

Требования к спектральным оптическим свойствам частиц:

- Высокое альбедо частиц для значительного отражения излучения (при этом объемное поглощение излучения в облаке велико вследствие многократного рассеяния);
- Продолжительная сублимация относительно крупных частиц решающее преимущество.

Серия расчетов показала, что SiC – приемлемый выбор для частиц тепловой завесы.

СПЕКТРАЛЬНЫЙ ПЕРЕНОС ТЕПЛОВОГО ИЗЛУЧЕНИЯ

Основное допущение:

Перемешивание испаряющихся и \checkmark исходных частиц пока не учитывается.

Одномерная краевая задача [1]:

$$-(Dg')' + \alpha g = \alpha F_{pv}(z)$$

$$Dg'(0) = (g(0) - F_w)/2$$
$$Dg'(d) = (F_{sol} - g(d))/2$$

Прошедший поток излучения:

$$q_{\rm w} = \int_{0}^{\infty} q_{\rm w,\lambda} d\lambda$$
$$q_{\rm w,\lambda} = (g(0) - F_{\rm w})/2$$

Обознач

 $\overline{R} = R/L$

Обозначения:
$$\alpha = f_v E_a$$
 $\sigma_{tr} = f_v E_s^{tr}$
 $F_{pv} = 4\pi I_b(T_p)$ $F_{sol} = \pi I_b(T_{sol})/\overline{R}^2$ $F_w = 4\pi I_b(T_w)$
 $\overline{R} = R/R_{sol}$ $I_b(T)$ – функция Планка

 $D = 1/(4\beta_{\rm tr})$ $\beta_{\rm tr} = \alpha + \sigma_{\rm tr}$

L.A. Dombrovsky, The use of transport approximation and diffusion-based models in radiative transfer calculations, 1. Comput. Thermal Sci. 4 (2012) 297–315.

НЕСТАЦИОНАРНОЕ ТЕПЛОВОЕ СОСТОЯНИЕ СУБЛИМИРУЮЩЕГО ОБЛАКА ЧАСТИЦ

Уравнение энергии:

$$\rho(T_{\rm p})c(T_{\rm p})\frac{\partial T_{\rm p}}{\partial t} = P(t,z)/f_{\rm v}(t,z) - 3\dot{m}(t,z)L/a(t,z)$$

Поглощенная мощность излучения:

$$P = \int_{0}^{\infty} p(z) d\lambda$$
$$p(z) = \alpha [g(z) - F_{pv}(z)]$$

Начальное условие: $T_{\rm p}(0, z) = T_{\rm w}$

<u>Массовая скорость сублимации SiC</u>:

 $\dot{m} = A \exp\left(-\overline{E}_{a}/T\right)$ – закон Аррениуса $\overline{E}_{a} = 90707 \text{ K}$ $A = 1.709 \cdot 10^{11} \text{ кг/(м}^{2} \text{ c})$

Уменьшение радиуса и объемной доли частиц:

$$\frac{\partial a}{\partial t} = -\dot{m}(t,z)/\rho \qquad a(0,z) = a_0 \qquad f_v(t,z) = f_{v0} \left(a(t,z)/a_0 \right)^3$$

РЕШЕНИЕ МОДЕЛЬНОЙ ЗАДАЧИ

ФОРМИРОВАНИЕ ОБЛАКА ЧАСТИЦ И ОЦЕНКА РОЛИ СВЕТОВОГО ДАВЛЕНИЯ

ВМЕСТО ЗАКЛЮЧЕНИЯ

Представленные физические и вычислительные модели разработаны автором. Расчеты проведены без использования коммерческих кодов.

Соавторами работы по гипертермии, которая проводилась с 2011 по 2015 г., являются коллеги из Австралии (UNSW и Prince of Wales Hospital, Sydney), которые не только финансировали работу, но и активно участвовали в обсуждении результатов.

В исследовании предлагаемого метода тепловой защиты солнечного зонда приняли участие Д.Л. Ревизников (МАИ), А.П. Крюков (МЭИ) и В.Ю. Левашов (Ин-т механики МГУ), которые являются полноправными соавторами работы. Работа принята к опубликованию в международном журнале "Journal of Quantitative Spectroscopy and Radiative Transfer".

Спасибо за внимание!

